Abstract

A novel chelating resin for preconcentration of heavy metals from various seawater samples has been developed by condensing 1-amino-2-hydroxy-7-[(4-hydroxyphenyl)diazenyl] naphthalene-4-sulfonic acid (AHDNS) with formaldehyde (1:2 mole ratio) in the presence of oxalic acid as the catalyst. The resin thus obtained was used as a solid sorbent for the separation of divalent metal ions present at trace levels in seawater. The functionalized phenol (AHDNS) was characterized by spectral studies. The polymeric resin AHDNS-formaldehyde (AHDNS-F) obtained by condensing the functionalized phenol and formaldehyde was characterized by IR and NMR spectral studies. The chelating property of the AHDNS-F resin towards divalent metal ions was studied as a function of pH and in the presence of electrolyte. The metal uptake properties of the resin were determined by using an atomic absorption spectrophotometer. This procedure was validated for recovery of divalent metal ions from seawater samples. The recoveries of cadmium, cobalt, copper, manganese, lead, and zinc were above 92% under the optimum preconcentration conditions. The LOD was <0.73 μg/L and the RSDs were <2%. Thus, the AHDNS-F resin can be widely used as a solid sorbent for the preconcentration of trace metals at ppm levels in seawater samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.