Abstract

Water-dispersible blocked polyurethane dispersions (BPUD) were synthesized by prepolymer mixing process using toluene 2,4-diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), poly(tetramethylene glycol) (PTMG), dimethylol propionic acid (DMPA), and methyl ethyl ketoxime (MEKO). The particle size, viscosity, pH and storage stability of the BPUDs were studied and compared. The aqueous dispersions were characterized by FT-IR, GPC, DSC and TGA techniques. De-blocking temperatures of the BPUDs were measured and end-capped with phenylamino propyl trimethoxysilane (PAPTMS) at different de-blocking temperatures. The thermal analysis revealed that both MDI- and TDI-based BPUDs started to de-block at about 60–85 °C. The average molecular weights of the MDI-BPUDs were higher than that of the TDI-BPUDs due to the high reactivity of MDI. It was noticed that the tensile strength increased and elongation at break decreased in the silylated BPUD compared to pure BPUDs, which confirmed that the BPUDs were de-blocked and end-capped with PAPTMS. The T g values of the silylated BPUD were higher than the BPUD and pure PTMG as well as thermal stability. Storage stability results showed that all BPUDs containing PAPTMS were stable. Water and xylene resistance tests and gel content studies confirmed that silylated PU cross-linked well after silylation of blocked PUDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.