Abstract

The synthesis and the characterization of new polymer electrolyte membranes made of fluorinated copolymers based on vinylidene fluoride (VDF) and hexafluoropropylene (HFP) and grafted by aryl sulfonic acids are presented. They were obtained in a three-step process. First, the conventional batch radical terpolymerization of α-trifluoromethacrylic acid (TFMAA), VDF and HFP, initiated by 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane led to original fluorinated functional terpolymers bearing carboxylic acid side groups in fair to good yields (>55%). The microstructure and the thermal properties of these macromolecules were studied. Interestingly, poly[(VDF-alt-TFMAA)-co-HFP)] random terpolymers that contained alternated microblock structures based on VDF and TFMAA units separated by one HFP unit were evidenced by 19F nuclear magnetic resonance (NMR) spectroscopy. That technique also enabled us to assess the termonomer contents. Average molecular weights, glass transition temperatures, and decomposition tempera...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.