Abstract

Membranes for desalination using forward osmosis (FO) should be stable and ordered, with high water flux and low reverse solute flux performances. In this study, metal-organic framework (MOF) was embedded on a ceramic membrane surface in order to make it feasible to be used in FO process. Two-stage preparation steps were taken involving sol-gel Pechini’s method for membrane surface modification, followed by solvothermal synthesis to finally deposit the MIL-140B (MOF) on the membrane’s surface. 1D structure of our MOF (MIL-140B) was observed using field-emission scanning electron microscopy (FE-SEM) and its unaffected crystallinity was proved using X-ray diffraction (XRD) regardless of changes in the study parameters (reactant concentration and time of synthesis). Brunauer-Emmett-Teller (BET) conducted in this study displayed type IV isotherm pattern with hysteresis loop which signify MIL-140B as a mesoporous particle. The final performance results concluded that 0.3 M reactant concentration under 16 h synthesis time was the best preparation condition since sample D gave excellent water flux (12.023 L/m2 h) and showed remarkable drop in the reverse solute flux (0.094 L/m2 h) performances. These results indicate a potential of high FO membrane efficiency as comparable to the best in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call