Abstract
We report the effect of calcination on the structural and optical properties of nanocrystalline NiO nanoparticles were successfully synthesized by virtue of a single source precursor method at mild reaction conditions between nickel nitrate and sodium hydroxide. Composition, structure and morphology of the products were analyzed and characterized by X-ray powder diffraction (XRD). The ultra-violet visible (UV–vis) absorption peaks of NiO exhibited a large blue shift and the luminescent spectra had a strong and broad emission band centered at 328nm. The intense band gap was also observed, with some spectral tuning, to give a range of absorption energies from 2.60 to 3.41eV. The various functional groups present in the NiO nanorods were identified by FTIR analysis. High resolution transmission electron microscopy (HRTEM) and the chemical composition of the samples the valence states of elements were determined by X-ray photoelectron spectroscopy (XPS) in detail. The electrochemical response of NiO proved that the nano-nickel has a high level of functionality due to its small size and higher electrochemical activity without any modifications. The above studies demonstrate the potential for the utilization of NiO nanoparticles as a promising material for opto-electronics applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.