Abstract

The objective of this paper is to develop a coating method for placing ultrathin zirconia films, fabricated using sol–gel methods, onto micro end mills. Sol–gel synthesis is investigated because of its potential as a low energy and inexpensive method for depositing a variety of wear resistant and chemically stable oxide coatings that could potentially extend tool life. Two sol–gel based deposition methods are investigated: dip-coating and electrophoretic deposition (EPD). The coatings are deposited on 300-μm-diameter micro end mills. Initial results suggest that sol–gel coating methods can produce the required coverage and conformity in the cutting zone. However, preliminary findings show that the coating is removed in the cutting zone after a short time of machining (6 s). The tool pretreatment and extent of sintering, which affect surface adhesion coating mechanical properties, require further study and optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.