Abstract

An investigation has been carried out on the synthesis and characterization of ZA-27 alloy composites reinforced with zinc oxide nanoparticles. This was aimed at developing high performance ZA-27 matrix nanocomposite with low density. The particle size and morphology of the zinc oxide (ZnO) nanoparticles were investigated by Transmission Electron Microscope (TEM) and the elemental composition was obtained from Energy Dispersive Spectroscopy (EDS) attached to TEM and X-ray fluorescence spectroscopy (XRF). ZA-27 nanocomposite samples were developed using 0, 1, 2, 3, 4 and 5wt% of ZnO nanoparticles by double steps stir casting technique. Mechanical properties and Microstructural examination were used to characterize the composite samples produced. The results show that hardness and ultimate tensile strength of the composite samples increased progressively with increase in weight percentage of ZnO nanoparticles. Increase in Ultimate tensile strength (UTS) of 10.2%, 21.1%, 22.3%, 35.5%, 33.4% and increase in hardness value of 8.2%, 14.8%, 21.7%, 27.9%, 27.1% were observed for nanocomposites reinforced with 1wt%, 2wt%, 3wt%, 4wt%, and 5wt% ZnO nanoparticles respectively in comparison with unreinforced alloy. It was generally observed that composite sample containing 4wt% of reinforcement has the highest tensile strength and hardness values. However, the fracture toughness and percent elongation of the composites samples slightly decreased with increase in ZnO nanoparticles content. Results obtained from the Microstructural examination using optical microscope and Scanning Electron Microscope (SEM) show that the nanoparticles were well dispersed in the ZA-27 alloy matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call