Abstract

A series of well-defined, long-branched polystyrenes (PS) of various architectures, but the same overall molecular weight, suited to the systematic study of branching effects, have been synthesized by anionic polymerization and characterized. Three end-branched, star-branched polystyrenes with 6, 9, and 13 end branches were synthesized with a trifunctional organolithium initiator; the synthesis of the 13-end molecule required a recently developed methoxysilyl functionalization and precipitation procedure to remove excess linking agent. In these architectures the number of branch points was fixed at four, while the number of chain ends varied. A 6-end, pom-pom (dumbbell-shaped) PS with two branch points was synthesized with a difunctional organolithium initiator. A regular 6-arm star polystyrene having one branch point was included to provide a comparison among three polymers, each having 6 ends, but having the number of branch points equal to 1, 2, or 4. The intrinsic viscosities and infinite dilution dif...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call