Abstract

Abstract Water-soluble 2,3-dihydroxypropylcellulose-polyacrylamide graft copolymers (DHPC-g-PAM) were prepared by Ce4+ ion-initiated graft copolymerization of acrylamide (AM) onto 2,3-dihydroxypropylcellulose (DHPC) dissolved in dilute nitric acid at room temperature under argon. The ratios of the concentration of Ce4+ ion to the concentration of DHPC were shown to affect the number and the length of the polyacrylamide grafts. The average number of grafts per chain was determined by acid-catalyzed degradation of the cellulose backbone and was found to be consistent with the presence or absence of free DHPC in the polymerization product prior to hydrolysis. The average number of grafts per DHPC molecule was found to be 2.7 or less depending on the reaction conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call