Abstract

Protein O-glycosylation is a universal post-translational modification and plays essential roles in many biological processes. Recently we reported a technology termed cellular O-glycome reporter/amplification (CORA) to amplify and profile mucin-type O-glycans of living cells growing in the presence of peracetylated Benzyl-α-GalNAc (Ac3GalNAc-α-Bn). However, the application and development of the CORA method are limited by the properties of the precursor benzyl aglycone, which is relatively inert to further chemical modifications. Here we described a rapid parallel microwave-assisted synthesis of Ac3GalNAc-α-Bn derivatives to identify versatile precursors for cellular O-glycomics. In total, 26 derivatives, including fluorescent and bioorthogonal reactive ones, were successfully synthesized. The precursors were evaluated for their activity as acceptors for T-synthase and for their ability to function as CORA precursors. Several of the precursors possessing useful functional groups were more efficient than Ac3GalNAc-α-Bn as T-synthase acceptors and cellular O-glycome reporters. These precursors will advance the CORA technology for studies of functional O-glycomics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.