Abstract

Owing to its low structural strain and non-toxicity, TiO2 has gained immense attention as a safe electrode material for lithium-ion batteries (LIBs). In this study, we fabricated nanoscale fibrous cellulosic templates via electrospinning. These templates were then used to fabricate one-dimensional hollow TiO2 electrodes by the sol-gel method and subsequent calcination at various temperatures. The TiO2 hollow nanofibers (HNFs) were composed of tiny (5 nm) anatase TiO2 nanoparticles. The nanofibers maintained this particle size and the anatase phase at the calcination temperature up to 400 °C. The optimized TiO2 HNFs, when used as the LIB anodes, exhibited a high reversible specific capacity of 152 mA h g−1 at a current density of 185 mA g−1 and 81% cyclic retention at the 100th cycle. These excellent electrochemical properties of the nanofibers can be attributed to their optimized phase and unique hollow nanostructure with large surface area, which provided them an efficient electrode/electrolyte contact area and faster ion/electron diffusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.