Abstract

Herein, two fully renewable copolyester series, namely poly(pentylene 2,5-furandicarboxylate-co-caprolactone) (PPeCFs) and poly(hexamethylene 2,5-furandicarboxylate-co-caprolactone) (PHeCFs) were successfully synthesized with combining ε-caprolactone (CL) with poly(pentylene 2,5-furandicarboxylate) (PPeF) and poly(hexamethylene 2,5-furan dicarboxylate) (PHeF) with different molar ratios. These materials, with a CL content ranging from 10 to 50 mol%, were synthesized for first time using stannous octoate as catalyst via ring opening polymerization (ROP). Their chemical structures and molar composition were evaluated by 1H NMR, 13C NMR and FTIR spectroscopies, while their thermal properties were investigated in detail using Fast Scanning Calorimetry (FSC), Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). The obtained results, in combination with Wide-Angle-X-ray diffractometry (WAXD), showed that copolymerization of CL with PHeF and PPeF led to semi-crystalline and partially amorphous copolyesters respectively, providing the basis for significant thermal properties enhancement with respect to the polycaprolactone (PCL) homopolymer, and therefore a much wider range of melting points (Tm) and glass transition temperatures (Tg) were obtained. TGA of the new copolymers showed excellent thermal stability, exceeding 310 °C and 360 °C for PHeCFs and PPeCFs respectively, while their decomposition mechanism was evaluated by pyrolysis-gas chromatography/mass spectroscopy (Py-GC/MS). Almost all copolyesters and mainly the ones with 40 and 50 mol% CL content showed accelerated enzymatic hydrolysis rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.