Abstract

Abstract Poly(aryl imide)-poly(dimethyl siloxane) randomly segmented copolymers were synthesized by essentially a one-step solution imidization process in a solvent system consisting of predominately o-dichlorobenzene with a small amount of n-methylpyrolidone. This solvent combination was selected because of its ability to afford homogeneous solutions throughout the polymerization process. This enabled copolymers of any desired poly(dimethyl siloxane) composition to be prepared. A hydrolytically stable triphenylphosphine oxide containing diamine, bis(3-amino-phenoxy-4′-phenyl)phenylphosphine oxide, was utilized as a chain extender and together with oxydiphthalic anhydride formed the hard segment in these copolymers. The soft segment was formed from α,ω-aminopropyl poly(dimethyl siloxane) oligomers of controlled molecular weight. The presence of phosphorus and silicon contributes several unique properties to the system, including enhanced solubility, thermal stability, and flame resistance. High molecular weight copolymers containing up to 60% (w/w) of the poly(dimethyl siloxane) segments were successfully prepared using this method. Gel permeation chromatography analysis, based on a universal calibration curve in CHCl3, was performed to determine the molecular weights and distribution. These copolymers with 40-60% (w/w) poly(dimethyl siloxane) exhibited upper Tg values ranging from 130 to 180°C and showed substantial char yields at 750°C in air, which increased with siloxane content. Dynamic mechanical analysis confirmed the anticipated microphase behavior by the presence of two separate glass-transition regions. Both small angle x-ray scattering and transmission electron microscopy measurements determined on well-characterized transparent cast films were used to better demonstrate the multiphase nature of these copolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call