Abstract

Triazenide [M(eta2-1,3-ArNNNAr)P4]BPh4 [M = Ru, Os; Ar = Ph, p-tolyl; P = P(OMe)3, P(OEt)3, PPh(OEt)2] complexes were prepared by allowing triflate [M(kappa2-OTf)P4]OTf species to react first with 1,3-ArN=NN(H)Ar triazene and then with an excess of triethylamine. Alternatively, ruthenium triazenide [Ru(eta2-1,3-ArNNNAr)P4]BPh4 derivatives were obtained by reacting hydride [RuH(eta2-H2)P4]+ and RuH(kappa1-OTf)P4 compounds with 1,3-diaryltriazene. The complexes were characterized by spectroscopy and X-ray crystallography of the [Ru(eta2-1,3-PhNNNPh){P(OEt)3}4]BPh4 derivative. Hydride triazene [OsH(eta1-1,3-ArN=NN(H)Ar)P4]BPh4 [P = P(OEt)3, PPh(OEt)2; Ar = Ph, p-tolyl] and [RuH{eta1-1,3-p-tolyl-N=NN(H)-p-tolyl}{PPh(OEt)2}4]BPh4 derivatives were prepared by allowing kappa1-triflate MH(kappa1-OTf)P4 to react with 1,3-diaryltriazene. The [Os(kappa1-OTf){eta1-1,3-PhN=NN(H)Ph}{P(OEt)3}4]BPh4 intermediate was also obtained. Variable-temperature NMR studies were carried out using 15N-labeled triazene complexes prepared from the 1,3-Ph15N=N15N(H)Ph ligand. Osmium dihydrogen [OsH(eta2-H2)P4]BPh4 complexes [P = P(OEt)3, PPh(OEt)2] react with 1,3-ArN=NN(H)Ar triazene to give the hydride-diazene [OsH(ArN=NH)P4]BPh4 derivatives. The X-ray crystal structure determination of the [OsH(PhN=NH){PPh(OEt)2}4]BPh4 complex is reported. A reaction path to explain the formation of the diazene complexes is also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.