Abstract

Although the synthesis of monolayer transition metal dichalcogenides has been established in the last decade, synthesizing nanoribbons remains challenging. In this study, we have developed a straightforward method to obtain nanoribbons with controllable widths (25-8000 nm) and lengths (1-50 μm) by O2 etching of the metallic phase in metallic/semiconducting in-plane heterostructures of monolayer MoS2. We also successfully applied this process for synthesizing WS2, MoSe2, and WSe2 nanoribbons. Furthermore, field-effect transistors of the nanoribbons show an on/off ratio of larger than 1000, photoresponses of 1000%, and time responses of 5 s. The nanoribbons were compared with monolayer MoS2, highlighting a substantial difference in the photoluminescence emission and photoresponses. Additionally, the nanoribbons were used as a template to build one-dimensional (1D)-1D or 1D-2D heterostructures with various transition metal dichalcogenides. The process developed in this study offers simple production of nanoribbons with applications in several fields of nanotechnology and chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call