Abstract

Titania nanorod structures have been obtained by thermal plasma reduction of ilmenite (FeTiO3) followed by chemical treatments. Inherently present iron in the titania nanorods acts as a dopant which results in shifting the absorption edge of titania from ultraviolet to visible region. X-ray diffraction (XRD) study confirms the existence of rutile phase of titania. X-ray Photoelectron Spectroscopy (XPS) reveals the presence of Ti4+, O2−, Fe3+ and surface hydroxyl group. Transmission Electron Microscopy (TEM) confirms the formation of nanorod structure having width of 6nm and length of 32nm. Photocatalytic annihilation property of titania nanorods derived from ilmenite (titania-I), rutile titania obtained from titanium(IV) butoxide (titania-A) and Degussa P25 titania was studied under UV and UV–Visible irradiation conditions separately and compared. The time required for complete photocatalytic annihilation of Escherichiacoli cells are 10, 15 and 45 min under UV irradiation whereas it has taken 15, 10–15, 30min under UV–Visible irradiation for titania-A, Degussa P25 titania and titania-I respectively. It is observed that titania-I shows significantly stronger antibacterial property under UV–Visible irradiation compared to UV alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.