Abstract

Titanium (Ti)-based alloys (e.g., Ti6Al4V) are widely used in orthopedic implant applications owing to their excellent mechanical properties and biocompatibility. However, their corrosion resistance needs to be optimized. In addition, the presence of aluminum and vanadium cause alzheimer and cancer, respectively. Therefore, in this study, titanium-based alloys were developed via powder metallurgy route. In these alloys, the Al and V were replaced with tin (Sn) which was the main aim of this study. Four sets of samples were prepared by varying Sn contents, i.e., 5 to 20 wt. %. This was followed by characterization techniques including laser particle analyzer (LPA), X-ray diffractometer (XRD), scanning electron microscope (SEM), computerized potentiostate, vicker hardness tester, and nanoindenter. Results demonstrate the powder sizes between 50 and 55 µm exhibiting very good densification after sintering. The alloy contained alpha at all concentrations of Sn. However, as Sn content in the alloy exceeded from 10 wt. %, the formation of intermetallic compounds was significant. Thus, the presence of such intermetallic phases are attributed to enhanced elastic modulus. In particular, when Sn content was between 15 and 20 wt. % a drastic increase in elastic modulus was observed thereby surpassing the standard/reference alloy (Ti6Al4V). However, at 10 wt. % of Sn, the elastic modulus is more or less comparable to reference counterpart. Similarly, hardness was also increased in an ascending order upon Sn addition, i.e., 250 to 310 HV. Specifically, at 10 wt. % Sn, the hardness was observed to be 250 HV which is quite near to reference alloy, i.e., 210 HV. Moreover, tensile strength (TS) of the alloys were calculated using hardness values since it was very difficult to prepare the test coupons using powders. The TS values were in the range of 975 to 1524 MPa at all concentrations of Sn. In particular, the TS at 10 wt. % Sn is 1149 MPa which is comparable to reference counterpart (1168 MPa). The corrosion rate of Titanium-Sn alloys (as of this study) and reference alloy, i.e., Ti6Al4V were also compared. Incorporation of Sn reduced the corrosion rate at large than that of reference counterpart. In particular, the trend was in decreasing order as Sn content increased from 5 to 20 wt. %. The minimum corrosion rate of 3.65 × 10−9 mm/year was noticed at 20 wt. % than that of 0.03 mm/year of reference alloy. This shows the excellent corrosion resistance upon addition of Sn at all concentrations.

Highlights

  • The minimum corrosion rate of 3.65 × 10−9 mm/year was noticed at 20 wt. % than that of 0.03 mm/year of reference alloy

  • The average size of powders of Ti and Sn are in the range of 50 to 58 μm, respectively

  • This shows the difference in particle sizes which is beneficial for densification

Read more

Summary

Introduction

Biomaterials are one of the very important classes of engineering materials owing to certain properties that make them appropriate for various applications such as dentistry and orthopedic surgeries. Such properties include biocompatibility, high strength, fatigue resistance, low elastic modulus [1], and excellent corrosion resistance [2]. Employed biomaterials include gold, stainless steel (SS), and cobalt chromium (CoCr) alloys [3,4,5,6] These alloys exhibit poor corrosion resistance and higher elastic moduli (i.e., SS = 205 GPa [7] and Co-Cr-Mo alloys = 230 GPa [8]) which results in revision surgery due to the stress shielding phenomenon [9]. This phenomenon takes place when the implant material transfers the major portion of the load resulting in unstressed tissue around the implant, leading to osteopenia and eventual implant failure [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call