Abstract

AbstractA series of thermotropic liquid crystalline polyurethanes (LCPUs) were synthesized by the polyaddition reactions of 2,4‐toluene diisocyanate (2,4‐TDI) with 4,4′‐bis(6‐hydroxyhexoxy)biphenyl (BHHBP) and aliphatic diol. The intrinsic viscosities of the polymers were measured by Ubbelohde viscometer, and the chemical structure was confirmed by Fourier transform infrared spectroscopy (FT‐IR). The LCPUs were examined by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide angle X‐ray diffraction (WAXD), and thermogravimetric analysis (TGA). The intrinsic viscosities were 0.56–0.83 dl/g. According to the melting point (Tm) and the isotropic temperature (Ti) of the LCPUs, the temperature range of the liquid crystalline phase became wider with increased number of methylene spacers in the polyurethane. The LCPUs exhibited a nematic phase with a threaded texture and had a wide mesophase temperature range. The decomposition temperature of the LCPUs was >300°C. On WAXD, the LCPUs give a dispersing peak at 2θ ≈ 20°, and a strong diffraction peak at 2θ ≈ 25°. Copyright © 2008 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.