Abstract

Novel water-soluble thermosensitive chitosan copolymers were prepared by graft polymerization of N-isopropylacrylamide (NIPAAm) onto chitosan using cerium ammonium nitrate (CAN) as an initiator. The physicochemical properties of the resulting chitosan-g-NIPAAm copolymers were characterized by Fourier transform infrared (FT-IR) spectroscopy, 1H-nuclear magnetic resonance, X-ray diffraction measurement, thermogravimetric analysis (TGA) and solubility test. Sol–gel transition behavior was investigated by the cloud point measurement of the chitosan-g-NIPAAm aqueous solution. The gelling temperature was examined using the vial inversion method. The percentage of grafting (%) and efficiency of grafting (%) were investigated according to concentrations of monomer and initiator. The maximum grafted chitosan copolymer was obtained with 0.4 M NIPAAm and 6×10-3 M CAN. Water-soluble chitosan-g-NIPAAm copolymers were prepared successfully and they formed thermally reversible hydrogel, which exhibits a lower critical solution temperature (LCST) around 32°C in aqueous solutions. A preliminary in vitro cell study showed nontoxic and bio- compatible properties. These results suggest that chitosan-g-NIPAAm copolymer could be very useful in biomedical and pharmaceutical applications as an injectable material for cell and drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.