Abstract

The Y/MCM-41 composite molecular sieves were synthesized in the method of hydrothermal crystallization with cetyltrimethylammonium bromide (CTMABr) as the template agent. The as-prepared composite molecular sieves were characterized by the means of X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), the thermogravimetric and differential thermal analysis (TG-DTA) and the nitrogen adsorption test. The experimental results were shown as follows: the Y/MCM-41 composite molecular sieves kept properties of Y-zeolites and MCM-41 molecular sieves. In the XRD and FT-IR spectra, it can be found both characteristic peaks of Y-zeolites and MCM-41 molecular sieves. The pore size distribution plot indicated that the Y/MCM-41composite molecular sieves had micro-mesoporous structure, and the average pore size were about 1.5 nm and 15 nm. The decomposition temperature of the template agent was at 320 °C, and the calcined temperature of Y-zeolites was at about 560 °C. There showed an endothermic process constantly in the DTA curve, and there was little mass loss in the TG curve, indicating the obtained Y/MCM-41 composite molecular sieves had higher thermal stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.