Abstract
The lithium phosphidosilicates Li10Si2P6 and Li3Si3P7 are obtained by high-temperature reactions of the elements or including binary Li-P precursors. Li10Si2P6 (P21/n, Z = 2, a = 7.2051(4) Å, b = 6.5808(4) Å, c = 11.6405(7) Å, β = 90.580(4)°) features edge-sharing SiP4 double tetrahedra forming [Si2P6]10- units with a crystal structure isotypic to Na10Si2P6 and Na10Ge2P6. Li3Si3P7 (P21/m, Z = 2, a = 6.3356(4) Å, b = 7.2198(4) Å, c = 10.6176(6) Å, β = 102.941(6)°) crystallizes in a new structure type, wherein SiP4 tetrahedra are linked via common vertices and which are further connected by polyphosphide chains to form unique ∞2[Si3P7]3- double layers. The two-dimensional Si-P slabs that are separated by Li atoms can be regarded as three covalently linked atoms layers: a defect α-arsenic type layer of P atoms sandwiched between two defect wurzite-type Si3P4 layers. The single crystal and powder X-ray structure solutions are supported by solid-state 7Li, 29Si, and 31P magic-angle spinning NMR measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.