Abstract

Amyloid fibrils in senile plaque mainly consist of the 40-mer and 42-mer amyloid β-proteins (Aβ40 and Aβ42). Although Aβ42 plays more important role in the pathogenesis of Alzheimer's disease (AD), Aβ40 could be involved in the progression of AD pathology because of its large amount. Recent studies revealed that variable sizes of Aβ oligomers contributed to the neuronal death and cognitive dysfunction. However, how large oligomeric species are responsible for AD pathogenesis remains unclear. We previously proposed a toxic dimer model of Aβ with turn structure at positions 22 and 23 using solid-state NMR and systematic proline replacement. Based on this model, we herein show the synthesis and biological activities of an E22P-Aβ40 dimer at position 30, which was connected to l,l-2,6-diaminopimeric acid. The E22P-Aβ40 dimer formed stable 6∼8-mer oligomers without amyloid fibrils, but was not neurotoxic on human neuroblastoma cells. On the other hand, E22P-Aβ40 generated high molecular-weight oligomers into fibrils, and showed the neurotoxicity. These results suggest that such kind of Aβ40 dimer with a parallel β-sheet might not be pathological.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.