Abstract

Shell cross-linked (SCL) micelles with hydroxy-functional coronas have been constructed in aqueous solution by exploiting the micellar self-assembly behavior of a new thermoresponsive ABC triblock copolymer. This copolymer was prepared via atom transfer radical polymerization in a convenient one-pot synthesis and comprised a thermoresponsive core-forming poly(propylene oxide) (PPO) block, a cross-linkable central poly(2-(dimethylamino)ethyl methacrylate) (DMA) block, and a hydroxy-functional outer block based on poly(glycerol monomethacrylate) (GMA). DMF GPC analysis confirmed a unimodal molecular weight distribution for the PPO-PDMA-PGMA triblock copolymer precursor, with an M(n) of 12 100 and a polydispersity of approximately 1.26. This copolymer dissolved molecularly in aqueous solution at 5 degrees C but formed micelles with hydroxy-functional coronas above a critical micelle temperature of around 12 degrees C, which corresponded closely to the cloud point of the PPO macroinitiator. Cross-linking of the DMA residues using 1,2-bis(2-iodoethoxy)ethane produced SCL micelles that remained intact at 5 degrees C, i.e., below the cloud point of the core-forming PPO block. Dynamic light scattering studies confirmed that the SCL micelle diameter could be varied depending on the temperature employed for cross-linking: smaller, more compact SCL micelles were formed at higher temperatures, as expected. Since cross-linking involved quaternization of the DMA residues, the SCL micelles acquired cationic surface charge as judged by aqueous electrophoresis studies. These cationic SCL micelles were adsorbed onto near-monodisperse anionic silica sols, which were used as a model colloidal substrate. Thermogravimetric analyses indicated a SCL micelle mass loading of 2.5-4.4%, depending on the silica sol diameter and the initial micelle concentration. Aqueous electrophoresis measurements confirmed that surface charge reversal occurred after adsorption of the SCL micelles, and scanning electron microscopy studies revealed a uniform coating of SCL micelles on the silica particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call