Abstract
Three Schiff base compounds, N1,N2-bis(3-nitrobenzylidene)phenylene diamine (NBBA), 2-methyl-N-(3-nitrobenzylidene)aniline (MNBA) and N-(2-chlorobenzylidene)-4-nitroaniline (CBNA) were synthesized, characterised and applied for the first time as potential mild steel (MS) corrosion inhibitors in 1 M HCl at 30 °C. Fourier transform infra-red (FTIR), 1H, 13C Nuclear magnetic resonance (NMR) and Mass spectrometry (MS) were used for the characterisation of the compounds. The electrochemical studies and evaluation of corrosion inhibition potency were achieved using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Density functional theory (DFT) calculations were further employed to describe the electronic distribution on the molecules and potential sites that aided corrosion inhibition. The results of the employed characterisation techniques confirmed the proposed structures of the compounds with the MS revealing the exact molecular mass of the compounds. Electrochemical results showed that the trend in inhibition efficiency of the three compounds was in the order: MNBA > NBBA > CBNA. MNBA recorded the highest inhibition efficiency at 100 ppm. Corrosion kinetics of the set of inhibitors was found to prefer the Langmuir adsorption isotherm with both physisorption and chemisorption mechanisms as revealed by ΔG values. In an effort to develop efficient corrosion inhibitors with non-toxic effect, low cost and multiple adsorption centres, these Schiff bases are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.