Abstract

Host material plays an important role in obtaining efficient photon upconversion and downshifting luminescence. Generally, fluoride and oxyfluoride glasses-based materials are used for high-efficiency photon upconversion. However, the poor thermal stability of fluoride glasses and the toxicity of fluorine ions limit their applications. In this report, Yb/Ho-doped CaSiO3 wollastonite phosphors have been demonstrated as efficient red-emitting upconversion phosphors. The phosphors have been synthesized by microwave hydrothermal process followed by heat treatment at 1050 ​°C in the air environment. 2M phase of the β-wollastonite has been confirmed by X-ray diffraction and Raman spectroscopy while the existence of the Yb and Ho dopants in the CaSiO3 lattice has been confirmed by X-ray photoelectron spectroscopy. The synthesized samples showed strong red upconversion emission centered at 662 ​nm and near-infrared downshifting emissions at 2016 ​nm upon 980 ​nm excitation. The emissions were found to depend significantly on the Ho concentration. Temporal evolution of the main emission bands was investigated to show that the energy transfer upconversion from Yb to Ho ions was responsible for the efficient upconversion and downshifting phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.