Abstract
The inherent sophisticated structure of wood inspires researchers to use it as a natural template for synthesizing functional nanoparticles. In this study, pure copper nanoparticles were synthesized using poplar wood as a natural inexpensive and renewable template. The crystal structure and morphologies of the copper nanoparticles were characterized by X-ray diffraction and field emission scanning electron microscopy. The optical properties, antibacterial properties, and stability of the hybrid wood materials were also tested. Due to the hierarchical and anisotropic structure and electron-rich components of wood, pure copper nanoparticles with high stability were synthesized with fcc structure and uniform sizes and then assembled into corncob-like copper deposits along the wood cell lumina. The products of nanoparticles depended strongly on the initial OH− concentration. With an increase in OH− concentration, Cu2O gradually decreased and Cu remained. Due to the restrictions inherent in wood structure, the derived Cu nanoparticles showed similar grain size in spite of increased Cu2+ concentration. This combination of Cu nanostructures and wood exhibited remarkable optical and antibacterial properties.
Highlights
Metal nanoparticles have garnered wide attention in the scientific community thanks to their exceptional physical and chemical properties [1]
When the OH− concentration reached 1.0 mol/L or higher, all the Cu2O contaminants disappeared and only Cu NPs remained in the products
The generation of pure Cu NPs may have been due to the wood template: firstly, the hierarchical structure of wood contributed to the assembly of NPs; and secondly, the electron-rich features of phenolic and hydroxyl groups in wood components exerted a reducing and stabilizing effect on Cu NPs [25]
Summary
Metal nanoparticles have garnered wide attention in the scientific community thanks to their exceptional physical and chemical properties [1]. In addition to the unique structure of wood, its lignocellulosic nature—composed of cellulose, lignin, and hemicelluloses—has a reducing and stabilizing effect on metal NPs given the electron-rich features of hydroxyl and phenolic groups in these components [24]. The morphologies and crystal structure of the Cu NPs were characterized, and the stability, optical properties, and antibacterial properties of the hybrid wood materials were investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.