Abstract

A series of four Werner-type complexes of Pd(II) and Pt(II) with planar, isomeric conjugated aromatic naphtoquinone oximes were synthesized for the first time. These ligands were 1-oxime-2-naphtoquinone (HL1) and 2-oxime-1-napthoquinone (HL2). Compounds were characterized using thermal analysis, spectroscopic methods, and X-ray analysis. TG/DSC data were collected for pure starting organic ligands, their complexes, and indicated vigorous exothermic decomposition with at ~155 °C for starting HL and ~350 °C for transition metal complexes. Crystal structures for two Pt compounds with 2-oxime-1-quinone were determined and revealed the formation of the cis-geometry complexes and incorporation of molecules of stoichiometric solvents in the lattice: acetonitrile and nitrobenzene. Both solvents of crystallization displayed attractive interactions between their C-H groups and the oxygen atoms of the nitroso groups in complexes, leading to short distances in those fragments. Despite the presence of solvents of inclusion, the overall structure motifs in both compounds represent 1D columnar coordination polymer, in which the PtL2 units are held together via metallophilic interactions, thereby forming ‘Pt-wires’. The Hirshfield surface analysis was performed for both crystallographically characterized complexes. The results showed intermolecular π–π stacking and Pt–Pt interactions among the planar units of both complexes. In addition, the analysis also verified the presence of hydrogen bonding interactions between the platinum unit and solvent molecules. Solid bulk powdery samples of both PtL12 and PtL22 demonstrated pronounced photoluminescence in the near infrared region of spectrum at ~980 nm, being excited in the range of 750–800 nm. The NIR emission was observed only for Pt-complexes and not for pure starting organic ligands or Pd-complexes. Additionally, synthesized Pt-naphtoquinone oximes do not show luminescence in solutions, which suggests the importance of a 1D ‘metal wire’ structure for this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call