Abstract

A series of poly(phenylenebenzophenone)s with sulfonic acid groups via long alkyl side chains, SPPBPs, were successfully prepared as proton exchange membranes for fuel cells. The new monomer, 1,4-dichloro-2,5 diphenylenemethoxybenzophenone (PMBP) was synthesized by the Friedel–Crafts reaction of tetrachloroterephthalate with anisole and copolymerized with 1,4-dichloro-2,5-diphenylenebenzophenone (PBP) to prepare poly(phenylenebenzophenone)s copolymers containing dimethoxy groups (sPPMBP). After converting the methoxy group to the reactive hydroxyl group, the resulting side-chain-type sulfonated copolymers (SPPBP) were obtained by a sulfopropylation reaction. These SPPBP series membranes showed high proton conductivity in the range of 98.4–162.1 mS/cm 80 °C under 90% hydrated conditions. SPPBP-40 (IEC = 2.45 meq./g) showed comparable higher proton conductivity (162.1 mS/cm) than Nafion 211 (130.2 mS/cm) in the 90% hydrated state. The membranes were studied by 1H NMR spectroscopy, thermo-gravimetric analysis, ionic exchange capacity, water uptake, and proton conductivity. Also surface morphologies were assessed by atomic force microscope (AFM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.