Abstract

Abstract In this work, proton-conducting membranes have been prepared by entrapping human nail keratin in bacterial cellulose at different mass ratios. Bacterial cellulose was obtained by fermenting coconut water with the Acetobacter xylinum bacterium, and keratin was obtained from human nails. The membrane is produced by the blending and heating process at a temperature of 40°C. FTIR spectroscopy showed the interaction between bacterial cellulose and human nail keratin at a peak area of 3,000–2,000 cm−1. The X-ray diffraction analysis has confirmed the effect of keratin mass on the diffractogram pattern of the membranes. The maximum proton conductivity has been measured as 4.572 × 10−5 S·cm−1 at 25°C and produces a degree of swelling of 32.50% for a mass ratio of bacterial cellulose/human nail keratin 4:1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.