Abstract
Transparent and crack-free Pr-doped silica glass scintillators were successfully synthesized using the sol–gel method. A peak found at 301 nm in the photoluminescence spectrum was ascribed to a radiative transition of the Pr3+ emission center. The associated excitation peak was located at 276 nm. The energy of the excitation peak (4.50 eV) was significantly lower than the energy gap (5.83 eV) of the 1S0 to 3H4 f–f transition. Therefore, the f–f transition was excluded as the origin, and the transition was attributed to 5d–4f. In the absorption spectrum, several bands of the f–f transition were observed. Fourier transform infrared spectroscopy was employed to understand the microstructural features and OH group concentration in the Pr3+-doped silica glass. It was revealed that a Si–O network had been successfully formed, and that the OH group concentration decreased with increasing thermal treatment temperature reaching a saturation value for temperatures higher than 750 °C. The absence of praseodymium oxide nanocrystalline clusters was confirmed by transmission electron microscopy (TEM), even in the sample with the highest Pr ion concentration. Scintillation properties of the Pr3+-doped silica glass were also characterized. The scintillation decay time constants were estimated to be approximately 1.3 and 14 ns, which supports the assignment of the luminescence to the 5d–4f transition. The scintillation light yield of the Pr3+-doped silica glass was estimated to be approximately 130 photons/MeV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.