Abstract
Highly crystalline nanospherical iron-platinum systems were produced by 248 nm laser irradiation of a liquid precursor at different laser fluences, ranging from 100-375 mJ/cm(2). The influence of laser intensity on particle size, iron composition, and structure was systematically investigated. Different nanostructures of iron-platinum alloy and chemically disordered iron-platinum L10 phase were obtained without annealing. The prepared precursor solution underwent deep photolysis to polycrystalline iron-platinum nanoalloys through Fe(III) acetylacetonate and Pt(II) acetylacetonate. Fe(II) and Pt(I) acetylacetone decomposed into Fe(0) and Pt(0) nanoparticles. We found that the (001) diffraction peak shifted linearly to a lower angle, with the last peak shifting in opposition to the others. This caused the face-centered cubic L10 structure to change its composition according to laser fluence. The nanostructures were shown to contain iron and platinum only by energy-dispersive spectroscopy at several spots. The response of these iron-platinum nanoparticles to infrared depends on their stoichiometric composition, which is controlled by laser fluence.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.