Abstract

The physical and chemical properties of porous zero-valent iron nanoparticles (ZVINs) have highly been acknowledged in the decontamination of heavy metal containing wastes and groundwater. In the present work, the treatment of Cr-contaminant through adsorption onto the ZVINs has been studied. The morphology, crystal structure, and surface composition of Fe(O) nanoparticles were investigated by field emission scanning electron microscopy/energy dispersive X-ray spectroscopy (FE-SEM/EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), respectively. X-ray absorption near edge structure (XANES) revealed that the Cr(VI) species reduce to Cr(III) while oxidizing the ZVINs to Fe2O3, Fe3O4 or FeO electrochemically. Furthermore, the nitrogen adsorption-desorption isotherm of the porous nanoparticles was similar to a type IV curve with an obvious mesopore-characteristic H3 hysteresis loop, whereas the sizes of mesopores were in the range of 30-50 nm. Experimentally, the efficiency for Cr(VI) removal in the range of 150-300 ppm was found to be > 99.9%. Remarkably, the reduction reaction was completed within 10 min in the absence of additional pH controls. This work also highlights the utility of X-ray absorption spectroscopy (XAS) coupled with conventional characterization methods to comprehensively study the speciation and possible reaction pathway in adsorption process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call