Abstract

A series of polyurethane (PU)/poly(vinylidene chloride) (PVDC) interpenetrating polymer networks (IPNs) were synthesized through variations in the amounts of the prepolyurethane and vinylidene chloride monomer via sequential polymerization (80/20, 60/40, 50/50, 40/60, 30/70, and 20/80 PU/PVDC). The physicomechanical and optical properties of the IPNs were investigated. Thermogravimetric analysis (TGA) studies of the IPNs were performed to establish their thermal stability. TGA thermograms showed that the thermal degradation of the IPNs proceeded in three steps. Microcrystalline parameters, such as the crystal size and lattice disorder, of the PU/PVDC IPNs were estimated with wide-angle X-ray scattering. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1375–1381, 2007

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.