Abstract

A facile synthetic approach to segmented polysulfone-containing polyesters affords a versatile family of high-temperature thermoplastics with tunable thermomechanical properties. End-capping of phenol-terminated polysulfone (PSU) using ethylene carbonate generated telechelic oligomers with primary alcoholic functionality. Melt transesterification of dimethyl terephthalate and 1,4-butanediol in the presence of PSU oligomers yielded high molecular weight segmented block copolymers with alternating PSU and poly(butylene terephthalate) (PBT) sequences. Systematic variation in PSU incorporation resulted in tunable PBT segment length and accompanying thermal properties. DSC and SAXS elucidated a miscible, amorphous PSU and PBT phase, and PBT crystallinity remained below an 80 wt % incorporation of PSU. Dynamic mechanical analysis (DMA) revealed a crystallinity-dependent plateau regime above the copolymers glass transition temperature (Tg), while SAXS and WAXD confirmed a semicrystalline morphology below 80 wt %...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call