Abstract

A new monobasic bidentate ON donor Schiff base PS–LH2 (where PS–LH2 = polystyrene-anchored Schiff base obtained by condensation of chloromethylated polystyrene (containing 1.17 mmol of chlorine per gram of resin cross-linked with 2% divinylbenzene), 2-hydroxy-1-naphaldehyde and 4-aminosalicylic acid has been synthesized. PS–LH2 reacts with metal complexes to form polystyrene-anchored complexes: PS–LHM(CH3Coo) · DMF (where M = Cu, Zn, Cd, UO2), PS–LHZr(OH)2(CH3Coo) · 2DMF, PS–LHFeCl2 · 2DMF, PS–LHM′(CH3Coo) · 3DMF (where M′ = Mn and Ni) and PS–LHMoo2(acac), where acacH = acetylacetone. The polystyrene-anchored complexes have been characterized by elemental analysis, IR, ESR and magnetic susceptibility measurements. The per cent reaction conversion of PS–LH2 to polystyrene supported coordination compounds lies between 30–95. Shifts of the azomethine ν(C=N) and phenolic ν(C–O) stretches are indicative of ON donor behaviour of the polystyrene-anchored ligands. The complexes, PS–LHCu(CH3Coo) · DMF, PS–LHFecl2 · 2DMF, PS–LHMn(CH3Coo) · 3DMF and PS–LHNi(CH3Coo) · 3DMF are paramagnetic, while PS–LHZn(CH3Coo) · DMF, PS–LHCd(CH3COO) · DMF, PS–LHUo2(CH3Coo) · DMF, PS–LHZr(OH)2(CH3COO) · 2DMF and PS–LHMoO2(acac) are diamagnetic. The copper(II) complex exhibits a square planar structure, zinc(II) and cadmium(II) complexes have tetrahedral structures, nickel(II), manganese(II), iron(III), dioxomolybdenum(VI) and dioxouranium(VI) complexes have octahedral structure and zirconium(IV) complex is pentagonal bipyramidal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.