Abstract
A new series of phenothiazine-based polymeric electrolytes were developed to obtain a high power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). Phenothiazine-based click polymers were synthesized using Cu(I)-catalyzed click reaction methods. The resulting polymers were soluble in common organic solvents and had a reasonable molecular weight. The thermal properties, emission spectra, and energy band gap of synthesized click polymers were also investigated. The polymer electrolytes were composed of iodide and triiodide redox species embedded in phenothiazine-based click polymers or polyacrylonitrile (PAN) as a polymer matrix. DSSCs were fabricated with a configuration of SnO2:F/TiO2/N719 dye/polymer electrolyte/Pt devices using these click polymers or PAN as an electrolyte components and compared photovoltaic performance. The maximum PCE of the phenothiazine-based click polymers as polymer electrolytes for DSSCs was obtained 5.30% (at 1 sun). These enhanced click polymers are expected to find applications as an electrolyte component in DSSCs in the future. Open image in new window
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.