Abstract

3,6-diisobutyl-2,5-diketopiperazine (DIBDKP) was prepared from L-Leucine with good yield. Then a new class of biodegradable poly(ether-urethane)s (PEUs) was synthesized by the pre-polymerization reaction of DIBDKP with 4,4-methylene-bis-(4-phenylisocyanate) (MDI). Prepolymer reacted with poly(tetramethylene glycol) (PTMG) with molecular weight of 1000 (PTMG-1000) to obtain a series of new poly(ether-urethane-urea)s (PEUU)s. These multiblock copolymers are biodegradable and thermally stable. Some structural characterization and physical properties of these polymers before and after degradation in soil, river water and sludge are reported. The environmental degradation of the polymer films was investigated by SEM, FT-IR, TGA, DSC, GPC and XRD techniques. A significant rate of degradation was occurred in PEU samples under river water and sludge condition. The polymeric films were not toxic to Escherichia coli (Gram negative), Staphylococcus aureus and Micrococcus (Gram positive) bacteria and showed good biofilm formation on polymer surface. Our results show that hard segment degraded selectively as much as soft segment and these polymers are susceptible to degradation in soil and water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.