Abstract

Phase inversion method was used to prepare polyethersulfone (PES) ultrafiltration (UF) membranes. Polyethylene glycol (PEG); N, N-dimethyl formamide (DMF) and water were utilized as pore-forming additive, solvent and non-solvent, respectively. Effects of PES and PEG concentrations in the casting solution, PEG molecular weight (MW) and coagulation bath temperature (CBT) on morphology of the prepared membranes were investigated. Taguchi experimental design was applied to run a minimum number of experiments. 18 membranes were synthesized and their permeation and rejection properties to pure water and human serum albumin (HSA) solution were studied. It was found out that increasing PEG concentration, PEG MW and CBT, accelerates diffusional exchange rate of solvent (DMF) and non-solvent (water) and consequently facilitates formation of macrovoids in the membrane structure. The results showed that, increasing PES concentration, however, slows down the demixing process. This prevents instantaneous growth of nucleuses in the membrane structure. Hence, a large number of small nucleuses are created and distributed throughout the polymer film and denser membranes are synthesized. A trade-off between water permeation and HSA rejection was involved, with membranes having higher water permeation exhibited lower HSA rejection, and vice versa. Hence, optimizing preparation variables to achieve high pure water permeation flux along with reasonable HSA rejection was inevitable. Analysis of variance (ANOVA) showed that all parameters have significant effects on the response (water flux and HSA rejection). However, CBT and PES concentration were more influential factors than PEG concentration and MW on the responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call