Abstract

Polychloromethylstyrene nanoparticles of sizes from 12.0 ± 2.3 to 229.6 ± 65 nm were prepared by the emulsion and miniemulsion polymerization of chloromethylstyrene in an aqueous continuous phase in the presence of potassium persulfate as initiator, sodium octylbenzenesulfonate as surfactant, and hexadecane as costabilizer for the miniemulsion polymerization process only. The influence of various polymerization parameters (e.g., concentration of the monomer, initiator, the crosslinker monomer, and the surfactant) on the properties of the particles (e.g., size, size distribution, and yield) has been elucidated. The polychloromethylstyrene nanoparticles formed via the emulsion polymerization mechanism possess smaller diameter and size distribution than those formed under similar conditions via the miniemulsion polymerization mechanism. Other differences between these two polymerization mechanisms have also been elucidated. For future study, we wish to use these nanoparticles for the covalent immobilization of bioactive reagents such as proteins to the surface of these nanoparticles for various biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.