Abstract
A new family of biodegradable amino acid-based poly(ether ester amide)s (AA-PEEAs) consisting of three building blocks [poly(ε-caprolactone) (PCL), L-phenylalanine (Phe), and aliphatic acid dichloride] were synthesized by a solution polycondensation. Using DMA as the solvent, these PCL-containing Phe-PEEA polymers were obtained with fair to very good yields with weight average molecular weight (Mw) ranging from 6.9 kg/mol to 31.0 kg/mol, depending on the original molecular weight of PCL. The chemical structures of the PCL-containing Phe-PEEA polymers were confirmed by IR and NMR spectra. These PCL-containing Phe-PEEAs had lower Tg than most of the oligoethylene glycol (OEG) based AA-PEEAs due to the more molecular flexibility of the PCL block in the backbones, but had higher Tg than non-amino acid based PEEA. The solubility of the PCL-containing Phe-PEEA polymers in a wide range of common organic solvents, such as THF and chloroform, was significantly improved when comparing with aliphatic diol based poly(ester amide)s and OEG based AA-PEEAs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.