Abstract
AbstractSpectroscopic [UV–visible and Fourier transform IR (FTIR)] and thermal properties of chemically synthesized polyanilines are found to be affected by varying the protonation media (acetic, citric, oxalic, and tartaric acid). The optical spectra show the presence of a greater fraction of fully oxidized insulating pernigraniline phase in polyaniline doped with acetic acid. In contrast, the selectivity in the formation of the conducting phase is higher in oxalic acid as a protonic acid media. The FTIR spectra of these polymers reveal a higher ratio of the relative intensities of the quinoid to benzenoid ring modes in acetic acid doped polyaniline. Scanning electron micrographs revealed a sponge‐like structure derived from the aggregation of the small granules in acetic acid and oxalic acid doped polyaniline. A three‐step decomposition pattern is observed in all the polymers, regardless of the protonic acid used for the doping. The second step loss related to the loss of dopant is found to be higher in the oxalic acid doped polymer. In accordance with these results the conductivity is also found to be higher in oxalic acid doped material. The temperature dependent conductivity measurements show the thermal activated behavior in all the polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2043–2049, 2004
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.