Abstract

BackgroundThe unprocessing hydrocarbon oil often contains high concentrations of mercury, which damages the metallic processing components and have health risk on workers and environment. Mercuric removal unit associated with natural gas processing plant is failed to complete mercury removal and then mercury distributed in most places of removal unit. Most of unremoved mercury are found in polar solutions.ResultsStyrene-co-acrylamide-graft-polyanilines were synthesized and characterized. The copolymer formed by free radical emulsion copolymerization of styrene-acrylamide (14:1) using ammonium persulphate (APS) at 60 °C. In addition, the grafting process was also achieved by oxidation chemical polymerization of the above copolymer with both aniline and 2-chloroaniline using APS. The synthetic polymeric samples were characterized using infrared (IR), x-ray diffraction (XRD), scan electron microscope (SEM), transition electron microscope (TEM), thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) to confirm the polymerization process and investigate the polymeric samples as new sorbents for Hg (II). Both adsorption kinetics and isotherm models were checked.ConclusionsIn most cases Hg (II) was adsorbed as multi-layer on the obtained mesopores materials. The grafting process enhances the copolymer activity towards Hg (II) removal. The complete removal of mercury from water solution portion of mercuric removal unit was achieved by introduction of synthetic polymeric mesopores material based on styrene-co-acrylamide-graft-polyanilines. The removal efficiency closed to 100% in case of grafting with poly (2-chloroaniline).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call