Abstract

AbstractOrganic/inorganic nanocomposites were synthesized from poly(methylmethacrylate) (PMMA) and properly modified silica nanoparticles by in situ polymerization. Methacryloylpropyltrimethoxysilane was selected as nanoparticle surface modifier because it is characterized by unsaturated end groups available to radical reactions, making possible to suppose their participation in the acrylic monomer polymerization. As a result of the above hypothesized reactions, a phase constituted by polyacrylic chains grafted onto modified silica surface was isolated. 29Si and 13C solid‐state nuclear magnetic resonance experiments permitted to analyze this phase in terms of composition and chain mobility as well as to highlight interaction mechanisms occurring between growing PMMA oligoradicals and functional groups onto silica surface. It was demonstrated that this PMMA grafted onto silica surface acts as an effective coupling agent and assures a good dispersion of nanoparticles as well as a strong nanoparticle/matrix interfacial adhesion. As a result of strong interactions occurring between phases, a significant increase of the glass transition temperature was recorded. Finally, the abrasion resistance of PMMA in the hybrids was significantly improved as a result of a different abrasion propagation mechanism induced by silica particles thus overcoming one of the most serious PMMA drawback. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.