Abstract

To increase the thermal and mechanical properties of poly( l-lactic acid) (PLA), a nontoxic biomesogen PFBH derived from ferulic acid (FA), 4-hydroxybenzoic acid (HBA) and 1,6-hexanediol (HD) was introduced into the PLA backbones by solution polymerization of PLA, PFBH and chain linker hexamethylene diisocyanate (HDI). The content of PFBH was varied from 0 to 30 mol% so that the effects of the biomesogen content on the thermal and physical properties, morphological textures and enzymatic degradation were examined, respectively. The synthesized materials were characterized by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (WAXD), polarizing light microscopy (PLM) and mechanical property measurements. It was found that introducing biomesogenic units could increase the thermal stability and reinforce the elastic properties, while reduced the melting temperature, the degree of crystallinity and the enzymatic degradation rate. The nontoxicity and biocompatibility of degradation would make the products promising candidates for medical applications in the area of tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call