Abstract
AbstractNanofibers of poly (indene‐co‐pyrrole) (CInPy) have been synthesized, using a facile chemical oxidative polymerization reaction. The effect of copolymerization was examined in view of the individually synthesized homopolymer nanostructures of polyindene (PIn) and polypyrrole (PPy). Morphological details of CInPy, studied using scanning electron microscopy (SEM) and transmission electron microscopy, (TEM) reveal the appearance of dense cottony mess, comprising of fine fibers with an average diameter of 5–10 nm. Chemical structural analysis of CInPy, conducted using ultraviolet‐visible (UV‐Vis), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopic techniques, reveals that both PIn and PPy are involved in the formation of copolymer organization. Fluorescence properties of nanosized copolymer are observed in the blue region, with emission λmax placed at 395 nm. Conductivity of copolymer nanofibers (2.4 × 10−3 S/cm) is consistent with the morphology and thermal stability properties of integral homo‐polymers. Improved thermal stability and processability along with the enhanced optical and electrical properties of copolymer nanostructures outfit it as a better promising material in optoelectronic and light emitting nanodevices, with reference to nanosized PIn and PPy. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.