Abstract

Dexamethasone sodium phosphate (DXP) is an anti-inflammatory drug commonly used to treat acute and chronic ocular diseases. It is routinely delivered using eye-drops, where typically only 5% of the drug penetrates the corneal epithelium. The bioavailability of such ophthalmic drugs can be enhanced significantly using contact lenses incorporating drug-loaded nanoparticles (NPs). The mechanism of release from chitosan NPs (CS-NPs), synthesized by ionic gelation, was studied in vitro. The DXP loaded CS-NPs were subsequently entrapped in contact lenses and the optical and drug-release properties were assessed. DXP release from CS-NPs followed diffusion and swelling controlled mechanisms, with an additional proposed impact from the electrostatic interaction between the drug and the CS-NPs. The release rate was found to increase with an increase in drug loading from 20 to 50wt%. However, an inverse effect was observed when initial loading increased to 100wt%. NP-laden lenses were optically clear (95-98% transmittance relative to the neat contact lens) and demonstrated sustained DXP release, with approximately 55.73% released in 22days. The release profile indicated that drug levels were within the therapeutic requirement for anti-inflammatory use. These results suggest that these materials might be a promising candidate for the delivery of DXP and other important ophthalmic therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.