Abstract

The adsorbent polymer/clay nanocomposites were prepared by in situ emulsion polymerization method. The prepared adsorbent was characterized using FT-IR, XRD, TGA and the surface morphology was analyzed using FE-SEM. The prepared polymer/clay nano-composite was used for the removal of malachite green and amido black 10B. The effects of initial pH, adsorbent dosage, initial metal ion concentration, contact time and thermodynamic studies on the malachite green and amido black 10B adsorption were studied. The adsorption isotherm parameters of the adsorption process were determined by using Langmuir, Freundlich and Temkin adsorption isotherm equations. The kinetic parameters were predicted with Lagergren’s pseudo-first order and pseudo-second order equations. The effect of temperature of the adsorption process was demonstrated by using the thermodynamic parameters. The maximum adsorption capacity of malachite green and amido black 10B onto polymer/clay nanocomposites was found at pH 7 and 2. Adsorption of malachite green and amido black 10B onto polymer/clay nanocomposites followed the Langmuir adsorption isotherm and it follows pseudo-second order rate constant equation The thermodynamic parameters, such as ΔHº, ΔSº and ΔGº were also determined which suggested that the studied adsorption process was an endothermic reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call