Abstract

Polyurethane nanomicelle is a promising functional drug delivery system. In this work, the polyurethane (P3-PU) was synthesized from PLGA1200-PEG1450-PLGA1200 (P3, a thermosensitive and biodegradable triblock copolymer) and L-lysine ester diisocyanate (LDI). Then, reactive benzaldehyde was further imported to terminate P3-PU to obtain benzaldehyde modified polyurethane (P3-PUDA). The micelles, temperature-sensitive P3-PU nanomicelle and P3-PUDA nanomicelle, were systematically investigated, including the size, stability, temperature sensitivity, drug loading and release behavior, cytotoxic on human hepatocytes (L02), and inhibitory effect on human hepatocellular carcinoma cells (HepG2). The results show the thermosensitive behavior of the micelles can be adjusted by the terminal group. The polyurethane micelles with a uniform size between 20 nm and 30 nm showed excellent stability and good biocompatibility to L02 cells. Besides, in vitro experiments showed that Dox-loaded P3-PUDA micelles exhibited faster and higher release rate at 37 °C and better inhibitory effect on HepG2 than the Dox-loaded P3-PU micelles. Moreover, the achieved benzaldehyde modified polyurethanes also provides various possibilities to adjust further to enlarge its applications. Therefore, the polyurethane micelles will have great potential in the field of drug carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.