Abstract

Abstract In this study, varying amounts of NIPAAm and an ionic liquid (IL), namely 1-vinyl-3-isopropylimidazolium bromide ([ViPrIm]+[Br]−), have been used to synthesize hybrid hydrogels by radical emulsion polymerization. Amounts of 70/30%, 50/50%, 30/70%, 15/85% and 5/95% (wt/wt) of PIL/pNIPAAm were used to produce hybrid hydrogels as well as the parental hydrogels. The adhesive strength was investigated and evaluated for mechanical characterization. Thermal properties of resulting hydrogels have been investigated using differential scanning calorimetry (DSC) in a default heating temperature range (heating rate 10 K min−1). The presence of poly ionic liquids (PIL) in the polymer matrix leads to a moved LCST (lower critical solution temperature) to a higher temperature range for certain hybrid hydrogels PIL/pNIPAAm. While pNIPAAm exhibits an LCST at 33.9 ± 0.3°C, PIL/pNIPAAm 5/95% and PIL/pNIPAAm 15/85% were found to have LCSTs at 37.6 ± 0.9°C and 52 ± 2°C, respectively. This could be used for controlled drug release that goes along with increasing body temperature in response to an implantation caused infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.