Abstract

The transport and optical properties of phosphorus-doped (Zn,Mg)O thin films grown via pulsed laser deposition (PLD) are studied. The carrier type of as-deposited (Zn,Mg)O:P films converts from n-type to p-type with increasing oxygen partial pressure. All the films exhibit good crystallinity with c-axis orientation. This result indicates the importance of oxidation conditions in realizing p-type (Zn,Mg)O:P films. The as-deposited ZnO:P film properties show a strong dependence on the deposition ambient at different growth temperatures. The resistivity of the samples deposited in O3/O2 mixture is two orders of magnitude higher than the films grown in oxygen and O2/Ar/H2 mixture. The room-temperature photoluminescence (PL) of the as-deposited films has been shown that growing in the O2/Ar/H2 mixture ambient significantly increases the band edge emission while inhibiting the visible emission. The enhanced ultraviolet (UV) emission in the films grown in O2/Ar/H2 mixture may result from hydrogen passivation of the deep level emission centers. The annealed ZnO:P films are n-type with nonlinear dependence of resistivity on annealing temperature. The resistivity increases in the films with annealing at 800°C while decreasing with further increasing annealing temperature. Strong visible light emission is observed from the ZnO:P films annealed in oxygen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.